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ABSTRACT

The solutions of the equation ut = (ul)xx for x e em 0 < t < T, m > 1,

where u(x,O) is a nonnegative Borel measure that vanishes for x > 0 (and

satisfies a growth condition at -m) exhibit a finite, monotone, continuous

interface x - (t) that bounds to the right the region where u > 0. We

perform a detailed study of C: initial behaviour, waiting time, behaviour

as t + ". For certain initial data the solutions blow up in a finite time

T : we calculate T in terms of u(x,O) and describe the behaviour of €

as t +T.
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SIGNIFICANCE AND EXPLANATION

-1he porous media equation (PM _

(pN) ut = (uM)xx, Tx(OT)

where m > I and T > 0 are constants and I is an intr-i-->Whas been

used as a model for a number of physical phenomena: heat diffusion at high

temperatures, boundary layer theory, spread of a thin layer of viscous

material and mainly the flow of gas in a porous medium. In all these

applications u > 0.

-The most distinctive characteristic of the solutions to (PM3) as compared

with the linear heat equation is the finite speed of propagationr¢

if the solution u(x,t) is supported in a bounded interval a < x < b at)

time t = 0 so it is for every time t > 0: u(x,t) - 0 for x 0 (a', -).

If we call ,1(t). 2(t) the best bounds a',b' at time t we btain two

monotone curves x - Cl(t), x = 12 (t) called interfaces that bound the

support of the solution.

. In this paper the properties of the interfaces are studied in terms of

the initial data. x it is assumed that u(x,0) 0 0 and that

u(x,O) = 0 for 3 > 0 herwise completely general and the study

concentrates on C - C2 (t). The beha ur of 1(t) for very small times and

very large times is shown to depend only o\the behaviour of u(x,O) near the

interface and near - respectively and prec e growth estimates are given.

Also the occurrence of a blow up in finite time is studied and estimated
i * t

and the behaviour of C(t) as t T described. Sometimes the interface is

stationary for a certain time 2  and then begins to move: we characterize

the existence of a positive waiting time and give bounds for it.

Completing what was already known these results provide a satisficVry

picture of the interfaces for the solutions of (P3E) when I = t.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.
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The equation appear, in a number of applications, the moat tyrpical being the flow of

*gas through a porous medi~um, where ui stands for th of the gast. This mOtivatesl

the assumption (31). Assumption (32) is justified in view of te existence thorzy in

fac u~n1lan, Crandall and Pierre [9] have constructed contiLnuous weak solutions teo the N-

dimensional analogue: (ps) ut - Lu,•  u(x,0) - u0 (x), N ) 1, in a maximal strip

i ij

* r / w
X (0,!*), 0 ( ! * T (u 0 ) ( m, under the condition
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bl U in finite tim. They also Prove that for nn9ative slutios a necessary and

sufficient condition for global existence, i.e. Y e, Is

(0.1) li R" ( if  ' 1 duo(X) - 0

Also Aronson and Caffarelli (4) showed that every continuous, nonnegatLve weak

solution of Ut a A! in a strip %, T > 0, has an initial trace u(x,O) which is a

locally bounded measure satisfying the growth condition (M2').

Recently Dahlberg and Kenig f11l proved that the continuous, nonnegative distribu-

tional solutions of (P.) in T , T > 0, are unique. For another uniqueness result cf.

(91 and its references. arly work on this subject goes back to Kalashnikoy (141.

In view of these results (H2) is an optimal growth condition for the initial values

of (M).

In this paper we are interested in describing the free-boundaries that appear n (P)s

indeed one of the most appealing features of (M) with a > 1 is the fact that when u0

vanishes outside a compact interval then the support of u(.,t), t > 0, in also compact.

This in called the finite orogagatLon Pronerty and ha been described by Oleinik,

Kalashnikov and Czhou (171 in their 1956 paper where the existence, uniqueness, regularity

and finite propagation for the solutions of (W) were first discussed at length.

The above considerations lead us to Introduce the assmptLon (33). 1We show that the

solutions of (M) under the assumptions (31)-(3) vanish for large enough x ) 0 for any

fixed time 0 < t < T • We define the outer riaht interface (or free boundary) of u as

the curve x = C(M), where

r (t) - sup(x z u(xt) > 0) if 0 < t < T
(0.2) =0 )sup(x : f duo  0 )

(x,-)

Then r. : (OT) 1 t0,-) is a continuous, nondecreasing function and there is a time t*.

-2-



o C t* T", called vaitimr-time, such that C(t) - C(O) if 0 < t < t*, C C C(t*,T )

and Cf(t) > 0 if t* < t < T*. All theme results were well-known when 0 L1 (a), of.

[1), (101, (16], t19]. In Section I we review these and other known results that we shall

need and show that they continue to hold under the present conditions.

For simplicity we shall refer in the mequel to x - C(t) as jh free boundary cc

interface. Remark that other Interfaces way also appears outer left interface and inner

interfaces, cf. 191. We shall sake a brief commeant on them at the end of the paper.

After Section I on preliminaries we estimate the blow-up time in term of the growth
x

of If duo(x)I as x . * in Section 2.
0
Section 3 is devoted to the waiting-timet we give necessary and sufficient

conditions on u0  for a positive waiting-time to exist as well as lower and upper

estimates of it.

In Section 4 we construct a class of global self-similar solutions behaving as

x * - like O(Ix a), -1 4 a < 2/tm - 1).

In Section 5 we prove that the behaviour of the interface for mall time depends only

on the behaviour of u0  near 0. By ccmparing with the explicit solutions of section 4

we give rates of growth for small t for various classes of Initial data.

A similar study is performed in section 6 for large t. Now the behaviour of C

depends on the behaviour of u0  for large negative x. In particular itf uO(x) - 1xa

for an a s -1 < < C 2/(m - 1) as x -- then as t + -, C(t) ty with

y - (2 - a(m-

Finally in Section 7 we study the behaviour of C(t) as t + T when T is

finite. In particular we show conditions under which C(t) + - as t + T *. We also

study the blow-up set, i.e. the set of points x e i for which u(x,t) * * as t T .

An Interesting question not dealt with here is that of determining if

j c e c I(o,T). The only point where this may not be true Is t * In (5) Aronson.

Caffarelli and Tamin exhibited a class of initial data for which is C1  smooth.

Recently Aronson, Caffarelli and the author (6) have proved that for roughly the

-3-



anientary cass Of initial date (t+) in. discontinuous at t - t * slf-SISLla

solutions starting moothly after a poitiv* waiting time are onsutructed in (IS).
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11. , istence and niaueness of solutions.

We recall here the results that we need from (91:

TWUORSU A. Let u0  be a Borel measure satisfyin (2). Then there exist. a maximal

time T 6 (0,e for which a solution u can be defined In (0,T) such tha

(i) u e C((0.T)a Liocta)) A Lo((0,!*)iZ)

(Li) u(x,t)(1 + xi 2) - 1/(M- 1 ) e x (0,T*))

(IIi) For # e CO( x (0,T)) we have

f f ("*t + Us 3)dxdt - f (xO)du0 (x)
0

Noreover if T ( * (In which case we say that the solution blows up In finite time)

(Uv) l,- Ill(o.0ll1  -o.

t+Y*

Here above X denotes the space of functions f e LloI (a) such that

.m

(1.1) '''f'I'r sup R f-1 afldx <
"r Ixl<R

for some (- all) r ) 0, equipped with the norm II1111. [91 contains further

Information on the solutLonst uniqueness, ... In particular It is Important to remark

that the solution u with initial data u0 • 0 can be obtained as the limit of

solutions un with smooth, compactly supported Initial data. Also P. Backs proved that

u is continuous In Q .
T

For uniqueness and comparison purposes we shall use the following result of Dehlberg

and !snig (111:

'UOU a. 10t u 1 (x,t), u 2 (xt) be contnuou, nonnesatLve functions In a strin

a2-I x (0, T), T 0 , such that

i) ul and u2 are solutions of ut -(u)xx n P'(Q,)s
4 ____________________________

II ] ] II, I~l -I-



ii) the initial aces U,(x,0), u 2 (xO) (that exist thanks to (41) satisfy

Ul(z,0) 4 U2(x,0) 18 Rneurzs.

Then ul(xt) C 2 (x~t) A& Q. (3

1- 2. Properties of the solutions.

The following properties are valid for solutions with smooth initial data in L()

and remain valid for general initial data by approximation.

PtOPZIr 8 1. (M (u1)xx ). -"m(a+ 1) and i) ut u in (Q
XX (a + 1)t - )u a+ I)t T

PROPWTY 82. if u0  is a function such that (ur l)a, ; 0 in P'() then

(u(x,t) W )xx) 0 in V'(2) for every t > 0.

PROPERTY 83. Given to solutions u,u with initial data u0 ,u 0 v have for every

t > 0 for which both are defined

(1.2) J ,u,t) - (X..t))+dx 4 J (duoCx) - %Cx)),

where (-) . max(*,O).

We remark that Property S3 implies in particular the pointwise comparison resultp cf.

for Property 81 (31, for Property 82 (1, Leems 21 and for Property 83 (8], (91. Nor the

next property we refer to our work [191.

PROPERT 84 (Whiftin-Comparison Lmema). ILt u,u be solutions of (P) under conditions

(Nl)-(n3). _l u0 ,u0 satisfy

(1.4) f d(u ) -C f d 0(x)
x x

for everY x e I then for everX t > 0 where both are defined e have

(1.5) 1 u(x,t)dx 1C ulx,t)dx
Sx x

COOZART 81. Under the above assumptions if (t),Z(t) are the interfaces defined in

(0.2) and t > 0 is as above then
-A-



NOTATION. We shall use the notation u0  u 0  or u ) uO meaning that (1.4) holds.

Conclusion (1.5) is than written as u(*,t) 4 u(*,t).

1.3. Some explicit solutions.

The following solutions will play an important role in the sequel as the models with

which we compare other solutions. first we consider the solutions w(x,ttN) of (P)

with w(x,OIN) - M8(x) where N > 0 and 6 is Dirac's delta function. They are given

by

1 _ _ 2

(1.7) w(xt1M) - t -2(-+ 1)m t2/(3-)1+

cf. (71, where C and N are related by

m*11

2.-(m-1 i (2(- + 1)) _.. IC *K aC ( ' I  
with a. -1 (l •

i

the right interface of w(xtsM) in given by x - r(t), where

(1.9) r(t) (u(m + 1 = 1) V 10+1

+1 3-1

with c* M (2(s + 1)) 0 ( I
wj,4 'a m  II- I M " Vm --" ) *

The solutions W(K,tf) serve as a model of solutions with L1
-data. cf. (191. For

solutions that blow up in finite time we shall use as model the family z(xtjT,C)

defined in QT, T > 0 by

12

(1.10) z(x,tT,C) - (T - t) (2m I + 1 ) (T t 2"2arm+ 1) CT - t)
2 ( 1  + C+

C can be any real nmber. If C > 0 * is always positive. If C - 0 s vanishes in the

((.*) is Muler's beta function.

-7-



region lxi ( r(T - t) with r defined as in (1.9). In this case we can consider the

restrictions

(1.11) s.(x,tiT,C) - B(x,t$TC)U(-x)

(1.12) £+(XttT,C) - s(X,tlTC)N(x)

where H(x) - I if x ) 0, H(x) - 0 if x ( 0. If C 4 0 *+,s. are solutions of (P)

and in fact the rght-nterface of z_ in the curve x- -r(T - t), 0 < t < T.

We shall write z(xetjT), z3t(xstlT) instead of z(xtTO), zt(xet/T.O).

1.4. .PronertLes of the interface.

Lot u be the solution of (P) under conditions (1), (82), (3) and let C(t) be

Its Interface as In (0.2). We have

PlAOIWST 11. C(t) is finite and nondecrasna for 0 < t < T •

PROOF. It is nondecreasing since Property 81, (ii) implies that if u(x,t) > 0 and

Z t, then u(xj) > 0.

To see that it is finite we remark that by Properties (R2), (33) there exist

constants CIC 2 ) 0 such that

041

(1.13) f d(x) ( C1 (xl + C2 ) 1

x

hence there exists T1 ) 0 such that u0 4 z_(x - C21 ,T 1 ) and the shifting comparison

leas Implies that

(1.14) €(t) < C2 for 0 < t < T,

It is clear from Theorem A (iv) that Te ) T1 . In case T* > T, we can repeat the

argument above up to any time T < T using the fact u e L (1 0,T),X). 0

We can now define the waLting-tLe t as in the Introduction. We have C(t) - 0

if 0 • t 4 t and C(t) > 0 if t < t < T . We shal show In Section 3 that t is

finite. We recall that the local velocty of a solution is defined In the set

((x,t):u(x,t) > 0) by V(x,t) - a u Ixf Cf. e.g. 11. If t C T we have

-U



POPlRTY 12. C e ClItT
* ) and for 0 C t < T* the limit

(1.15) lih V(x,t) - V(C(t),t)
x+C(t)

u(xt)>0

exists and eguals C'(t+) if t -0. Moreover

0.16) CO ) + (a + aI)t C, ) 0 tin VI(t*,T*)

h forare (t)t/(m i) s nondecreasing and C'(t) > 0 if t > t •

PIOP. (1.15) was proved in [1] and (16] for solutions with continuous, compactly-

supported initial datal C e CI is proved in (101 and for (1.16) of. (101 and (191. The

essential of the proofs remains unchanged using the properties already quoted and the

remark that Theorem A, (ii) and Property S1, (M) imply that for every 0 < t < T

V(x,t) is a locally bounded function of x. 0

PROPZURY 13. If u0  is a function such that (uml). • 0 in D(-) then C(t) i
*

convex functLon of t, 0 < t < t

PROOF. By Property 82 V(x,t) is a nonLncreasing function of x for every t > 0. This

means that V(x,j) ) V(€(i),t) - k ; 0, therefore If k > 0 the "constant-velocity

front*

1

(1.17) uk(k(t N •- z -

is a solution of (P) in R x (1,T*) such that ; 4 u. Rence for every t •

i* 11.181 I;(t) • l)+ C'(;)(t-1•

This means that C is convex. We remark that when t t we take V'i) to mean

'(t+). 0

-9-



2. BUM-UP TINS

In this section we estimate the blow-up time T - T*(u) of any solution u of (P)

such that u0  satisfies (N1) and (82)-(83) is not necessary - in terms of L0 - L(u 0 )

defined by

m+

(2.1) Le - lim sup XI1 N(x)
lXI

x 0

where 1(x) - If du 0 (x)]. Then 0 4 Lo < -. it ws proved In (9] that T < if and
0

only if L0 > 0 as we said.
*

We begin by showing that T depends only on the behaviour of uo for very large

Ixi: for any a 6 3 we define u as the solution of (P) with initial value

ut(xia) - u 0 (x) X(("a] ), i.e. u 0 (xla) coincides with u0  on (-,a] and vanishes

on (a,-). Likewise we define ub for some b e A as the solution of (P) with initial

value uo(xib) - u0 x) * x((b,-)). Then we have

PROPOSITION 2.1. All the solutions ,a a e I3, have the same blow-up tLme T 1 . Likewise

the family Ku) has a common blow-up time T; Finally

(2.2) T(u) - mn(T;,T).

PROOF. By the maximam principle, cf. (1.2), we have for every a' < a. b < b's

(2.3.a) T (u) 4 T*(ua) -C T(u,)

(2.3.b) T(u) 4 *(ub ) 4 T*(U,
The fact that ".(Ua) - 7 (u:,) is a consequence of (1.2) and Theorm A, (Lv)s (1.2)

implies that for t < T(uo) u a and f (u; - u!.)+dx is bounded by a constant

that does not depend on t. Therefore IIluaI(ot)III I is bounded as long as

*Iua*,(.,t)IIl~ is. By virtue of Theorem A (ii), (iv) this implies that

2 2
The same argument proves that T (u 2 ) - T (ub,).

To and the proof we have to show that if T - mlin(TIT;), then u is defined for

I
0 < t < T. For this we take an £ > 0 and prove that the supports of ua (*t) and

~-10-
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d2ot o not mtfor O <t(<T - if a((<O and b >> . Asminlgtati s

true we conclude as follows, i(x,t) n ua(x,t) + u2(x~t) .3 then the solution to (M) in

the domain iT-¢ with initial data uo - uo * x((ab)). rrom (1.2) we deduce that

u(x,t) is defined in QT-¢ and that

(2.4) f u(x,t)dx ( I ;(x,t)dx + I du0 (x)
(a,b)

for any 0 < t < T - C. Now lot e + 0 to get T(u) T.

12. 1
We control finally the supports of ull and u. Let us begin with net by Theorem

A (ii) there exists a constant C > 0 (that depends on ) such that for every a < 0,

0 < t < T - E and x < -1

(2.5) f ulao(t)do ( Cixlmn-i
x

Now we observe that if we set va (xt) (x - a/2,tT) with

(2.6) "m)o-

then (2.5) Implies that ua(x 0) 4 va(x,0) for every a < -1 so that Corollary 81 of

Section 2 implies that us(x,t) - 0 for every x ) a/2 and 0 < t 4 min(T,T - C). Let

nov N be the least integer ) (T - e)/r and set u - uaI, with a' - -2g. if

T - C T, - I and we have proved that ;(xt) vanishes in (-I,-) x (0,T - c). if

T - C T we can repeat the argument at t - w with v - z_(x - al/4,t - IT) o

conclude that u(xt) - 0 In (a 1/4,) x (0,min(2T,T - )). By Induction it follows

that u(x,t) - 0 for x ) -1 and 0 < t < T - C in any case.

In the sam wy we can prove that u2  with b' a and N' defined similarly

to N vanishes in (-m,1) x (0,T - E). This completes the proof. 0



The preceding result allows to reduce the study of the blow-up time to solutions

satisfying (1), (N2), (3). In this case

(2.7) L0 - lim su Ix" -  du(x)
X*-" x

The main result of this section is

TOin 1. T to infinite If and oly if L0 - 0. If L0  0 we have

T "a

a a -2m(m + 1) an - 1V 2) (of . (1.9)).

(2.9) T"- To/LR- .

PRAMO. By virtue of Proposition 2.1 we can as*=* tha't no 3. 0 on (0,-).

Let C > 0. There exists a constant C a C€ >) 0 such that

NMW 4 M a + €)Jx1 (NOl)/(S-) if x < -C. Therefor* theme exists a constt x )1 0 such

that u0(x) -€ z.(x - C,0oT .) where T¢ - TM(L o + C)1-S . It follows then from Propenrty

841, 12# that T* A T¢C (and that for every 0 < t < T C, u(-,t)-4 z_(- - x ,tpf~)) Letting

€ * 0 we obtain the left-hand inequality of (2.().

In cas e L0  i not only a li sup but the imt as x - of the expresion in

(2.7) we can repeat the argment now to find a 9 < 0 such that n0(s) x I(z - IK,01T €
wheire Obv ily T m o 0  i i 2. t follosI that T 2 TC hence a C 0, T 4 TUN

We pro" nexth e seond neqsltty of (2.8): muchoose a point j -1, m

a) i 1,0 at time t 0 to the point ; and onsider the solutaon

t(xt) - w(x - ;,tiN(x)) with initihal data GOW -0 x) 1 It f olowe hve for oerw y

x* 0 w ot ai th ethn nqult f(.)

(2.10) wc athe =rlen notv; t tfn a ) t ht x1 m .l

-12-



There In a sequence xn such that, given C > 0,

H( n ) ), (L0 -C)I m  if n is large enough, n he. Lot us set

U..'
- 1 * ) 2

(2.11) 
t 0 + ) 2

ca M - C)

for all large n P a we have:

(2.12) )1(;-) 10+1t NO + C) 1/2 .

Rne for same C - Cm > 0 we have with n ) nC

(2.13) jj 1 (x,t) • ClxI 12¢t-

if -1 4 x < 0. Since by construction ws have N(Xn)6(x - xn) 4 uo(x) we conclude that

for every t < T% U(Ot) 4 u(*,t) and in particular

*0
(2.14) 1 u(x,t)ax f ;(x,t)dx

-1 -1

a

In came T > t for an C > 0 we can use (2.13) to estimate the right-hand side of

(2.14) and let n to conclude that the integral f u(x,t )dx a a
-1

contradiction. Bence T C t. and letting € + 0 the result follow.

R3M1A. he accuracy of estimate (2.8) depends on the ratio

9 U~ .1n1! -1

(2.15) .- "-" -.---

I m  approaches 1 as a 4 1. Indod U = 1 + O(lge) as C 0. On the contrary

1a grows like 2m  as 3 2 4.

-13-
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3. ON T15 WAITNG TINS

in the sequel u~x,t) is the solution of (P) under assumptions (U1), M3), (83).

without lose of generality we set C (0) - 0. we discuss in this section the existence of

a positive waiting time and give estimates for it in terms of ua..

In [2] Aronson constructed an example of solution with smooth initial data having a

positive waiting time that he explicitly computed. To be specific if u0 - C2 o

for -w/2 4 x 4 w/2, uart (x) - 0 otherwise, he proved that to - (m - 1)/2m(m + 1) and

at that tine the second derivative Cuw0P Cx,t) )x blow, up at x - tw/2. Knorr discussed

in (161 (under the simplifying assumptions that uo is continuous, positive in a bounded

interval a,b), a < b, and zero outside) the waiting time t in terms of the behaviour

of POWx ju - near the endpoint bi thus if po(x) 4 C(b -x) 2for some

* a
C >0 and all x near b then t > 0; on the contrary if p0(x) )0C(b -x) with

C,x as before and a <2 then t 0.

In (S) Proneon, Caffarelli an Kazin prove the following result (adapted to our

notation):

THEORM C: Let u be a solution of (P), *t±- p mus- and assume that

S. e V a) and that POW s p~x,0) - __fo x > 0. if (0 x) - ax 2 o~x 2)as

x +0 Ind p0(x) 4 x in 27 for some cogstants a,.0>O than

3.)2Cm + 1)0 2(m + 1)a

COROLLARY As Under the above hvvotheses if a 0 then

(3.2) t 2(+ a

in this section we give a necessary and sufficient condition for the existence of a

positive waiting tie as well as an estimate of t in terms of M~x). Notice that under

hypothesis (H3) M~x) =0 if x > 0 and

0
(3.3) MWx - f do(x) if x < 0

x

-14-



[*

rn+
I ',mnTHnO 2. 1) t La lm eltiv if and ,onlZ If

(3.4) tJLM @up Kxxlxl-1

X+O

11) More grecLeel kf a - <n, t(x)x-in

T 6
(3.5) -Ct a

Who"e ?,06 are the sam -constants as in Theorem 1

3+1

COROLZ R 3.. If n i s such ft t the outremm of 10he 1x I is obtaned

Xlimit when x + 0 then

(3.7) t* .

W141

lISMBS. I) Since for P0 (x) - bx2 we have

I m+1

(3.8) W 31 )  • - bW- 1 lx1n
3 3+1

under the hypothesis p0 (x) 4 Ox the 1sft-hand inequality of (3.5) gives precisely

(M( + 1)) " 1 . t*. Also Corollary A Is lmplied by Corollary 3.1, the conditions being In

our case far less restrictive.

2) For the accuracy of (3.5) me Iemark at the end of Section 2.

PROOS OF TUORM 2. 11) Assume that 2 < -. We campae u(x, t) with

u(x,t) - z(x,tlT). It is lamediate that u0 4 ;0 if r 4 Tan Therefore we conclude

-15-



from Theorem I that T T and from the Shifting Comparison that for 0 < t < T,

Ut) I( Ut) - 0, hence t * )o . This proves (3.5), left.

For the upper bound in (2.5) we compare u(x,t) with the solution

u(x,t) - w(x - ;,tsN(;)) for an ; 0. Since it is clear that Z 0 < O we have for

every 0 4 t < T ZVt) 4 CUt). But since

we conclude that Vt) > 0 if t > This being true for every

< 0 we can take the infiuM- of the expression in the right-hand side and obtain thus

the desired inequality.

1) Since, because of assumption (32) 3 is finite if and only if

Un sup 3(x) lxi - is finite, (3.4) follows from (3.5).

111) We first recall that any solution u(x,t) with initial pressure

-2+2 ansuhttr x2
POWx - ax +ox)adscthtpo(x) 9 x has a waiting time given by (3.2)

(Corollary A).

Now for every E ) 0 the solution ;~ such that POWx oax2 It xe < r ( 0 and

POWx - 0 otherwise, satisfies u 0 -4 U0  if

I-

and x~ Cin small enough. Therefore t 16 t Mm2( + 1Wa 9 (A - C) tetting

c +0 we got(3.6). 0

We end the section by applying our results to a family of solutions already discussed

in (5):

XM1PL3. We le t a - 2 and consider the solutions u(x,ttB) with initial data

-1 -O~en2x + Osen 4x, if x e [_w,O]
(3.11) U0 (X) -~ ~e

1 0 otherwise

with 0 4 6 1 . Notice that since m 2 p,(x) -2u 0(x).



1) We estimate the waiting time when 8 = 1. In this case the results of (5) imply

that 0.3174 4 t*. We obtain more accurate estimates using Theormo 2: since the mmximum

of (x)txl 3 for -a < x < 0 is attained at the point x - -1.449951 with a value

a = 0.0769006 It follows from (3.5) that

(3.12) 0.3608 4 t 4 1.4432

2) Now we study the range of O's for which formula (3.2j, i.e. in this case

(3.13) 
t * 1 1

is valid. Since for x z 0 we have N(x)x"3 = (1/6)(1 - 0) + (1/30)(40 - 1)x2 + O(x4),

if we let i - sup(6 e 10,11: (3.13) holds) we have the lower estimate 6 P 0.25 as in

(5]. But the upper estimate in (3.5) allows us to conclude that for 8 near 1 (3.13)

does not hold. Indeed this happens for every 0 ) 0.86... Therefore

(3.14) 0.25 S C 0.88 ...

-17-



4. MO SZLP-8ZNI!LIR SOLUTIONS

To give exact rates of growth of the interface as t + - or t * 0 we need a

suitable family of models that we construct In this section.

Pot every a, -1 < a < 2/(m - 1), we let wa(xt) be the solution of (P) with

initial condition

J(a + 1xI4 if x < 0
(4.1) w axO) if x < 0

Since the map u - Tu defined by

(4.2) Tu(x,t) - ku(Lx,t)

where kL,T are given positive constants* transforms solutions of ut - (u) 3 nto

solutions if k"'L 2 - T and since Tv (x,O) - V a(x,O) if kL0 a 1 we conclude from the

uniqueness of the solutions of (P) that for every L > 0 we have

(4.3) w (x,t) - L wa(LxL 
2 a(m1)t)

for every x e a, t > O. In particular If we fix t > 0 and then choose L such that

L 2a(m-1)t = 1 we deduce that w can be represented in the form

(4.4) w (xt) - t f (xt -Y) in Q - R x (O,-) ,

with Y - (2 - a(m -I1))- > 0. Therefore w is a self-similar solution.a

It Is easy to see that f (E) - w (I) is a nonnegative solution of the second-

order differential equation

(4.5) (f)( ) = aYf(&) - YFf'() (v A
a -a

on the whole line t e a, such that fMC) + o(C ) as + and f(E)IJ- (a + 1)

as ( * -. The fact that there exists a unique solution of (4.5) with such behaviour as

ICI * follows from the existence and uniqueness of solutions of (P).

By Property I.1 the free boundary Ca  of wa  Is finite. If we let

(4.6) na - Ca (

then 0 < n < - and Ca(t) n t. na  depends only on a and mi In fact remarking

that Ma(x) - lxi a (lxi + 1) gives by means of the comparison argument of

-18-
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Property x.1

(4.7) 4 T -Y
RHAIUKS. 1) larenblatt 171 considered solutions of the toim t MIxt ) to solve the

probiem

u- (us) X f x) 0 t > 0

(4.8) u(x.0) a 0 if x 0

u(0,t) - at
6  

if t ) 0
1

This leads to the study of equation (4.5) with Y - (11+ 6(m - 1)) end side conditions

f(O) - o and f(-) - 0. He considered the case a > 1, 6 ) 0. a > 0.

A detailed study of the problem

(fm)ME) + ytf*(i) - f(E) for C > 0
(4.9) { f(O) - U > 0, f C) bounded as C + -

with a • I and independent parameters Y6 e 3 in made by Gilding and FeletiLer in (121.

[131 (where references to related works can be found). In case U > 0 they prove that

there exists a solution of (4.9) with compact support if y ) 0 and 2y + 6 ) 0 and this

solution Is unique. In the particular case of (4.5) where a,y,6 erg related as above

the conditions mean a > -2. In this way we recover the solutions w (xt) restricted to

the quadrant x ), Oat ) 0). Bounded positive solutions of (4.9) can be obtained under

our conditions for -2 < a 4 0. Since the equation (4.5) is invariant under the

transformation i " -n we can recover so the left pert, (x r Oat ) 0), of % (x,t) If

4 0.

out once we have the general existence and uniqueness theory for (P) our approach

gives a very simple proof of the existence and properties of v%(x,t) that relies on the

use of the scaling-invariance of the equation.

2) When a - (5 - 1)(m Y 1 1, we obtain the explicit solution

1

(4.10) w(x.t) a [";--clct - X)

-19-



with a suitable a > 0. This is called a constant-velocity front mince C(t) a at and

a w 1  ")- C whenever v > 0.

3) For a a (a - 1) "1 the initial pressure is a convex functions
a-I

(w5 (xO) ) o 0 a.e. Therefore the same holds for every t > 0, i.e. _a-1 is

convex and the free boundary na(t) Is convex.

4) The limit case a = -1 is represented by the solutions with finite mass, i.e. we

define

(4.11) Wvl(xt) - v(xtrl) as in definition (1.7)

and then

(4.12) h1q - co, as in (1.9).

Using again the transformation T we se that for c > 0 the functions

(4.13) w QC(,t)c 2 t myf(c ( - 1 ) x t- ¥ )

are solutions of (P) with initial data w Qc(x,O) = cW a(xO). Their interface is given

by x - n C, (t) where

(4.14) n , (t M a (cw 'lt) 
¥  .

Clearly (4.14) holds also for a - -1.

-20-



5. ZEHAVIOUR FOR SMALL t

we begin this section by showing that the behaviour of C(t) as t P 0 depends only

n the behaviour of K(x) as x+ 0.

LOW 5.1. 1et ul(x.t), u2 (x.t) be two solutions of (P) vith initial data

ul0(X),u0(x)o mass functions Nl(x).M 2 (x) and interfaces C1 (t),C 2 (t) rectively. If

N2(x)

x00 K1 (x)

then for every e 0 there exists T > 0 such that If 0 < t < T

(5.2) C 1((C + C) 01t) ) C2 (t) ) C1 ((c - C) E-t) .

PROOF. For every > ) 0 there exists x> 0 such that N2 (s) 4 (c + 6)NI(x) if

x x < 0. Now we use the transformation T, cf. Section 4, on the solution u2 with

initial data

(5.3) I 2x) = X x0
(S.) u2 () 0 otherwise•

S m+l -.~ u ~" -0
We put k - L - (1 + 6) so that T - (1 + and define u - T; 2 , u 0 " • The

* * )-

support of u0  is contained in the interval [x5,0], where x6 - x1 (I + 8) x,. Also

-* -* '-0
K x) 2(x) for every x, i.e. u0 )* u 2 .

Us now consider the solution U(xt) with Initial condition

fu0(g) if x < x

(5.4) Uo(x) U(,) if x; < x < 0

0 otherwise .

It Is clear that U0 >- u2, hence their interfaces Z(t),C 2 (t), satisfy

Z(t) C C2 (t) in their comon interval of definition. But since Uo(x) - 0 In the

interval [x,,x; ]  for a certain time T > 0, U(x,t) coincides with u (xt) if x > x)

.0

and 0 4 t 4 T, hence Z(t) C M (t).
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To prove the first Inequality of (5.2) we have yet to compare C2  and C1 . For this

we use again T, now with k - (c + 6)(1 + 6), L - I and T - (c + 6) 0 + 6)

We obtain a solution u To1  such that

(5.5) ; (C + )N1(I M +)x) 2 M + 6)x) • N (X)

i.e. u therefore Zi W ) Zt) - z(t) A C2(t) if 0 4 t 4 T. Choosing 8 ) 0

such that 0 ) + 6) (c+ 6) ' 1 
C (c + C),,-1 this jplies the desired inequality since

(1 lt) - L
1 
ClTt).

The second inequality can be obtained by reversing the roles of u1  and u 2 . 0

The solutionswe, c  constructed In Section 4 are used to give precise growth rates

for C(t) when t is small:

TRO3U 3. Let for some 0, 0 C 0 < (m + 1)/M - 1)

(5.6) Li sup M(x)lxl - c
x10

with 0 c 4 -. Then as t + 0

(5.7) Ac (
o-

1 ) c Lim sup c(t)t "¥ c nl (mr - ) ¥

where a - S - 1, y - (2 - a(m - 1))-l1 11 (defined in (4.6)) and Y > 0 depend only 0

and m.

If c is the limit of Mx)Ix "  as x + 0 then

(5.8) lim C(t)t"¥ - n  .
t+0

PROOM. The right-hand inequality of (5.7) and (5.8) follow from Lea (5.1) and formula

(4.14) for the interfaces of w.

To prove (S.7)-left we observe that there exists a sequence xn + 0 such that

-B
M(x n)IX n * c as n + f. We may assume that c > 0, if not there is nothing to

prove. e consider the solutions 7xn(Xt) - w( Xn ,tIm(xn)). it is clear that for

every n, u0 )- ;n(xO), therefore we have

I n-I,(5.9) C;(t) ) n~lNa(xn)m~ t - 1I - lXnl•

Now if we take a small C, 0 < C < c, we have MWx n ) ) (c - n)tx I for all large
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n 3 n We remark now that the function

(5.10) g(y) - AYM -y, 0( y(* 0 < P ,

takes on a maximum value at Y" - ow )

5.11 g(y) - y

3-1 1

Applying this result to (5.9) with A - n_ll - cllt and P - $(a - 1)/(a + 1) and

setting y= xn  we find that there exists a sequence {tn  such that tn e 0 as

n + - and

(5.72) C(t n) ((c - 6)0l tnee)

where ) . = -1 (s1

wher 11-l) *(Y(m + 1)
1
. Letting C + 0 we obtain (5.7)-left. 0

R.3AR18. 1) The first results on C(t) for mall t seem to be those of 1161 where it

in proved that (t) - Olt 1 /2) if u0 e e1m1.

The case u0 e L (R) is studied in (19): it is proved that C(t) ( nl(mr t)
1/m + 1

1
m+1

where N - lu I1  and also that C(t)t * 0 as t + 0. The assumptions u e LP lR),

I < p < - are also discussed.

2) If we let 0 ) 2 in (5.6) and c < - then t. > 0 cf. Section 3. if 0 2

and c ) 0 then t* - 0.

3) If 0 - 0 the limit of N(x) as x + 0 always exists and (5.8) applies.

-23-
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6. BIZAYZOUR As t

In this section we assume that u Is a global solution, i.e. T m m, and study the

behaviour of C(t) for large t. The results parallel those of Section 5 but now the

values of Mx) as x a are the only ones that matters

MUIA 6.1. aet U11U 2 be two global solutions of (P) with Lnitial dtat Ul0 mass

functions N1 1 M 2, and interfaces C1,C2 resuectjvely. If

N lx)

(6.1) 12 ) 0 < <

then for eve*r c ) 0 there exists C C 0 such that

(6.2) C1 1(c + t) U1t) + Cc ) C(t) ) £(1 t) - C

PROOF. For every C > 0 there exists x such that for x < x 0,

H 2 (x) 4 (c + C)NI(x) 1 W (X), where N1  is the mass of u1 a Tu I and the constants in

the transformation are k = c + C, L = 1, T - (c + C)-. Therefore we have for every x

(6.3) 2(x) (Mlx + x ) .

It follows that

(6.4) C2(t) 1 l(t) + IxEl - C1((c + C) ' 1 t) + Ix C I

Putting C. . IxC I we obtain the first inequality. The second is similar.

MARK 1. As in preceding sections Xnerr [16) obtained the first results: V.ader

simplifying assumptions on the initial data, cf. Section 3, he proved that

CM-Ot1/(M1
¢(t) - o(tl/(l)). In (19] very precise results are obtained when uO e L () (and

satisfies (RI), (R3)): It is proved that

m1 U-1

I) (t)t d cM , N lu0 I1

(6.S) LL) C'(t)t! cm ' , and

iii) elf) - cN 1 ts 1 * x 0 -N
"1 Ix~x

) f xu(x)d,
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xO. the center of mass, can be finite or o. otice that (6.5) implies that for every

solution C(t) grows at least like t

Using the solutions w in combination with Lgma 6.1 we obtain the following

growth rates:

THEOREM 4. Let for some B, 0 < ( + 1)/(m - 1)

(6.6) lim sup M(x) xi
"d - c

with 0 <c<-. Thenas t

(6.7) Ac(
m 

)Y ' lira sup C(t)t "
y • lac

where a,y,X and ni are as in Theorem 3. If moreover c is the limit of N(x)lx
-

a. x*- then

-Y (m-1)y
(6.8) Lin C(t)t - i c

t#m

PROOF. It is completely similar to that of Theorem 3, only changing throughout t + 0,

x+0 into t+, x+ .

REMARKS. 2) If we allow B = 2 in (6.6) then if c > 0 there is blow-up in finite

time. In case B > 2, c ) 0, no solution of (P) exists. If B - 0 the limit of M(x)

as x * - always exists, finite or Infinite.

3) The case no e LP(m), 1 c p c is treated in (19). Notice that u0 e LP()

implies M(x) O(Ixl ) with 0 if p < 0 1 if p .
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7. APPROhCHING A 3L0W-UP

In this section we assume that the blow-up time T is finite, i.e. that
3+1

N(x)lxi does not tend to 0 as x goes to -. We begin by describing the

a

different possible behaviours of the interface C(t) as t t T * RAt
* 0

(7.1) l i1m C(t), v = 1m c'(t)•

tT t+T

Both limits exist, either finite or Infinite. The four cases that may occur ares

(I) £ = 0, i.e. t - T and C(t) = 0 for 0 4 t 4 T . Ianples z_(xt;T ).

liI) 0 < I <e 0 < v .

(III) 0 < i t * . V = Example: z_(x,t;T*,C) with C < 0.

(IV) I =,v .

Remark that because of (1.16) A > 0 implies v > 0 and I = implies

vV =*.ad

An example of type (I) is easily constructed as follows: let u be the solution

with initial data

(7.2) u0 (x) - z_(X + 1,0;T) + N6(x)

where MT > 0. If T is small as compared with T, u equals exactly z_(x + 1,tsT) +

w(x,toN) in Q., has blow-up time T and C(t) - rN(t) for 0 < t < T.

On the hand it follows from Theorems I and 2 that (I) happens when the Limit of

exists as x + - and equals S.

Examples of type (IV) will follow from Proposition 7.1 below.

We introduce now a useful concept, that of blow-up set Z = £(u):

(7.3) 1 = (x e a : u(x,t) * * as t + T }

Note that the limit of u(x,t) as t t T exists for every x 4 R since

ut) -u/(m + 1)t, i.e. u(x.t)t
1/ (m 1 ) 

is nondecreasing in t, in Q *- The following
T

holds:

PROPOSITION 7.1. E is an interval beginning at -.
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PROOF. Let x be a point not belonging to Z. Por simplicity we take x 0 0. Since

lin u(Ot) < - as t + T there exists C > 0 such that u(Ot) 4 C for T*/2 4 C <
*

T We want to prove that no x > 0 belongs to 1. This is obvious if

,- 0 hence In the sequel we assume that C(t) ) 0 for t ) T - e > T*/2.

Consider for T - C - t < T the function p(x) - mu (xt)/Im " 1), p Is a

continuous nonnegative function on the interval (0.r(t)) such that p(O) 4 c,

p(M(t)) - 0 and pxx ) -K where K - ((a + I)T*/2)1. Now we take the parabola

j(x) - a- (k/2)(x - B)2  that passes through (0,c) and (M(t),0), i.e. with

(7.4) a+) 0 '2(?.2 kC 2 "- (€+

It is easy to see that p(x) 4 p(x) in (0,C(t)), hence in particular

(7.5) '(t) - -pxl(Ct) 4 - px (C(t)) - (kC(t) + cC(t)-

Integrating (7.5) from T - £ we conclude that C(t),,'(t) remain finite as t + T

Since the maximum of p(x,t) in x in (0,C(t)] is less than a and a is bounded

for t + T we conclude that for every x > 0, x f E. 3

We set b sup E. It in clear that -4 b 4 1 Moreover from the above proof

it follows

COROILARY 7.1. if b is finite then A is finite. If also I > b then v is

finite.

When u0  is nicely behaved at - there Is a simple formula for b. *Indeed if we

assume that the following limits exist:

10+1

(H2") tle N(x)|xl L-o1 t 0 < L0 < ,

and

* ,,+m1~

(R14 lin +(~5 R. ) =C, -4c -C~a.,,.- 0. - o .

then we have
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PROPOSITION 7.2. b* - c.
0 C

PROOF. (I) b' - . Assume that c < 0. We shall prove that for every c' ) c, b ( c'.

In fact there exists C1 > 0 such that N(x) 4 L0 (-x + €') l M-I l / l lr 1  for every

x < -C1. This means that by virtue of Property 83, 12,

(7.6) J (u(x,t) - s_(x - c',tuTe*)+dx N' <4

for every 0 < t < T where N' does not 4epend on t. Now since z.(x - c',tsT*) - 0

for x ) c' we deduce that

(7.7) u(x,t)dx 4 N', 0 < t < T*
cc

This Implies that c' ) b because of the following Leme. Hence b C c.

LE4A 7.1. For every x0 < b and every t > 0 we have

(7.8) iLM f u(x,t)x -
* I-x0 lt

PROOF. Since (u - 1 )1 x x o -K (see proof of Proposition 7.1) we have for every x,x 0 e 3.,

u(xt) • u(x0 ,t) - (1/21(x - x0 )
2 either for x > x0  or for x < x .  Hence

(7.9) 1 u(xt)dx ) (u(x0.t) - - C2)C
Ix-x0I 2

As u(xo,t) + - as t + T the result follows. 0

IL) b* ; c. Arguing as above if c > -- , for every c" < c there exists NO > 0 such

that

(7.10) ( z_(x - c-,tsT*) - u(x,t))+dx C NO < m e

How if b < ca this implies arguing as in Proposition 7.1 that u(x,t) Is bounded above

in (c,,c) X (Te/2,T*) for any c"' e (Iee). However lemma 7.1 applied to _

-28-
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Implies that am t T

Cu

(7.11) Jo Z(X - ctT )dx * -

b

* *

contradicting (7.10). Therefore b ) c", hence b 1 c. 0

Under the above assumptions the type (IV) corresponds precisely to c 4 . If

c < 0 we have an interface of type (1) or (II): remark that in this came we can replace

the Ila in condition (H4) by lie mup (and the same proof implies that
* *

b 4 c < 0 - I, ). We remark finally that when c - -- the blow-up set E In void: in

this case the sequence

(7.12) sn - sup lxi f u(xt n)dx
x<-I

must diverge as tn + T but the sup is taken at points Xn +-

It would seem that the blow-up merely concerns the set E. However, the next result

points out a global aspect:

Consider a solution u with initial data u0  that blows up at time T > 0. Let

(U on} an increasing sequence of measures that converge to U0  and let (un ) the

corresponding solutions. Let CA n be their respective free boundaries. We choose

UOn so that un exists for all time 0 < t. we have

PROPOSITION 7.3. (i) For every (xt) e % un(xlt) + u(xlt)

(Ii) For every 0 < t < T Cn(t) + C(t) •

(iii) For every t > T C(t) * and Cn(t) n .
W +_ - nC(t

(iv) For every x e R. t > T un (xt) + 4 .

PROOF. i) It is clear from the maxImom principle that for every n, un  un+ 1  u

whenever they are defined. Theorem 3 and Prop. 1.6 of (91 prove that the sequences

(u), ((u) ) and ((uM)t) are uniformly bounded in L,0(I x (0,T). Hence (u n

converges uniformly on compacts to a continuous solution u of ut = (um) in QT. Itsxx
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initial trace (that exists by (41) u0 necessarily satisfies uon ( Moreover 4 ( u.

It follows from Theorem 3, 12, that u - u.

(ii) Since obviously C nt) 4 Cn+ 1 (t) C(t) whenever they are defined we have to

prove that for t < T limonn(t) 3 t) C(t). In fact if O(N) - C(t0 ) - € for me

t o < T an C ) 0 this can only happen at a point where C already moves:

4'(t 0- k ) 0. Using the fact that c'(4t) - -p 3(C(to)to) where p - (./(m - mum-,

we conclude that u(x,t O ) > 0 for x near C(t 0 ). Since Un(xt O ) - 0 for every

x C n(to) ' O(t 0 ) we arrive at a contradiction with (I).

(iii) This is the first interesting point. We know (Theorem A, (iv)) that

tIIu('t)1111  f t as t + T. Since un + u it follows that for every n there exist

an integer in and a point (xt n ) e QT such that

310+

(7.13) uJn (Xtn)dx A (nixn )m 'l, tn * T, xn ( -1

0+1

we consider now the solution ;(x,t) - w(x - xnot - tInix a ), defLned for

t ) t n . By Corollary 81 we have, since UJn t in at time the

I

(7.14) C n(t) c (nIX I)(t - tn a 7 n  if t ). tn

11ow fix t - T + TT and let n in (7.14) to obtain (t) .

From (1.16) it follows that for every t > 0, Cn(t)t b (W4 1)(Cn(t) - CU(0)). nence

if t > T and n * -, C'(t) * *.

(iv) Let Pn(xt) - (m/(m - 1))Uni. Since P. ) 0, (P n ),m 0 -((m + 1)t) " ! and

(pn)x(Cx(t),t) - -Cn(t) It follows from (iII) that for t )o 1Iin un(C(t) - 1,t) - e

as n * . The conclusion un(xt) + 0 for every x ) 0 follows from the fact that

un is mdereusine In x for x > 0, t ) 0. A proof of this prop rty using

Caffarelli's Reflection Principle Is as follows If we compare Ln a demain

D - (a.' x (0,-) with a A 0 the functions un (met) and ;an(xt) - U( 2 a - x,t) it
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follows from the maximm principle that an  Now given 0 C x, < x2  and t > 0

take a - 1/2(xl + Y to conclude that %(Kit) ) Un(x 2 ,t).

To prove that un(x,t) + 0 even for x < 0 ye consider the solutions u With

initial data %0o - uhoX(-da) with a < 0. Thy approximate the solution u with

Ano a uo*X(-.a). Since T T we apply the above to conclude that u n(x~t) + for

every x a. t T. But un 4 un*
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9. OTHER INTRRFACBS

If u is a solution of (P) under conditions (H1)-(H3) and u0 (x) - 0 for x 4 a

then an outer left-interface appears

(8.1) C left(t) - inf(x : u(x,t) > 0), t >0 .

The properties of C are completely similar to those of C(t). Sinceleft
Ue e LI() the asymptotic behaviour an t + - is covered in 1191.

Also an inner free boundary in rmay appear: it is the part of the boundary r of

2 " {(xt); x e 2, 0 < t 4 T* and u(x,t) > 0) in Q * not contained in x - C(t) or

x= left(t). As explained in 119] it consists of an at most countable number of locally

Llpchitz arcs beginning at t - 0. Cf. for other details [19).
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